3.1.67 \(\int \frac {(A+C \cos ^2(c+d x)) \sec ^2(c+d x)}{\sqrt {b \cos (c+d x)}} \, dx\) [67]

3.1.67.1 Optimal result
3.1.67.2 Mathematica [C] (verified)
3.1.67.3 Rubi [A] (verified)
3.1.67.4 Maple [B] (verified)
3.1.67.5 Fricas [C] (verification not implemented)
3.1.67.6 Sympy [F]
3.1.67.7 Maxima [F]
3.1.67.8 Giac [F]
3.1.67.9 Mupad [F(-1)]

3.1.67.1 Optimal result

Integrand size = 33, antiderivative size = 73 \[ \int \frac {\left (A+C \cos ^2(c+d x)\right ) \sec ^2(c+d x)}{\sqrt {b \cos (c+d x)}} \, dx=\frac {2 (A+3 C) \sqrt {\cos (c+d x)} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )}{3 d \sqrt {b \cos (c+d x)}}+\frac {2 A b \sin (c+d x)}{3 d (b \cos (c+d x))^{3/2}} \]

output
2/3*A*b*sin(d*x+c)/d/(b*cos(d*x+c))^(3/2)+2/3*(A+3*C)*(cos(1/2*d*x+1/2*c)^ 
2)^(1/2)/cos(1/2*d*x+1/2*c)*EllipticF(sin(1/2*d*x+1/2*c),2^(1/2))*cos(d*x+ 
c)^(1/2)/d/(b*cos(d*x+c))^(1/2)
 
3.1.67.2 Mathematica [C] (verified)

Result contains higher order function than in optimal. Order 5 vs. order 4 in optimal.

Time = 1.46 (sec) , antiderivative size = 141, normalized size of antiderivative = 1.93 \[ \int \frac {\left (A+C \cos ^2(c+d x)\right ) \sec ^2(c+d x)}{\sqrt {b \cos (c+d x)}} \, dx=-\frac {4 b \left (A+C \cos ^2(c+d x)\right ) \left ((A+3 C) \cos ^2(c+d x) \sqrt {\cos ^2(d x-\arctan (\cot (c)))} \csc (c) \, _2F_1\left (\frac {1}{4},\frac {1}{2};\frac {5}{4};\sin ^2(d x-\arctan (\cot (c)))\right ) \sec (d x-\arctan (\cot (c)))-A \sqrt {\csc ^2(c)} \sin (c+d x)\right )}{3 d (b \cos (c+d x))^{3/2} (2 A+C+C \cos (2 (c+d x))) \sqrt {\csc ^2(c)}} \]

input
Integrate[((A + C*Cos[c + d*x]^2)*Sec[c + d*x]^2)/Sqrt[b*Cos[c + d*x]],x]
 
output
(-4*b*(A + C*Cos[c + d*x]^2)*((A + 3*C)*Cos[c + d*x]^2*Sqrt[Cos[d*x - ArcT 
an[Cot[c]]]^2]*Csc[c]*HypergeometricPFQ[{1/4, 1/2}, {5/4}, Sin[d*x - ArcTa 
n[Cot[c]]]^2]*Sec[d*x - ArcTan[Cot[c]]] - A*Sqrt[Csc[c]^2]*Sin[c + d*x]))/ 
(3*d*(b*Cos[c + d*x])^(3/2)*(2*A + C + C*Cos[2*(c + d*x)])*Sqrt[Csc[c]^2])
 
3.1.67.3 Rubi [A] (verified)

Time = 0.42 (sec) , antiderivative size = 82, normalized size of antiderivative = 1.12, number of steps used = 7, number of rules used = 7, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.212, Rules used = {3042, 2030, 3491, 3042, 3121, 3042, 3120}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {\sec ^2(c+d x) \left (A+C \cos ^2(c+d x)\right )}{\sqrt {b \cos (c+d x)}} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {A+C \sin \left (c+d x+\frac {\pi }{2}\right )^2}{\sin \left (c+d x+\frac {\pi }{2}\right )^2 \sqrt {b \sin \left (c+d x+\frac {\pi }{2}\right )}}dx\)

\(\Big \downarrow \) 2030

\(\displaystyle b^2 \int \frac {C \sin \left (\frac {1}{2} (2 c+\pi )+d x\right )^2+A}{\left (b \sin \left (\frac {1}{2} (2 c+\pi )+d x\right )\right )^{5/2}}dx\)

\(\Big \downarrow \) 3491

\(\displaystyle b^2 \left (\frac {(A+3 C) \int \frac {1}{\sqrt {b \cos (c+d x)}}dx}{3 b^2}+\frac {2 A \sin (c+d x)}{3 b d (b \cos (c+d x))^{3/2}}\right )\)

\(\Big \downarrow \) 3042

\(\displaystyle b^2 \left (\frac {(A+3 C) \int \frac {1}{\sqrt {b \sin \left (c+d x+\frac {\pi }{2}\right )}}dx}{3 b^2}+\frac {2 A \sin (c+d x)}{3 b d (b \cos (c+d x))^{3/2}}\right )\)

\(\Big \downarrow \) 3121

\(\displaystyle b^2 \left (\frac {(A+3 C) \sqrt {\cos (c+d x)} \int \frac {1}{\sqrt {\cos (c+d x)}}dx}{3 b^2 \sqrt {b \cos (c+d x)}}+\frac {2 A \sin (c+d x)}{3 b d (b \cos (c+d x))^{3/2}}\right )\)

\(\Big \downarrow \) 3042

\(\displaystyle b^2 \left (\frac {(A+3 C) \sqrt {\cos (c+d x)} \int \frac {1}{\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )}}dx}{3 b^2 \sqrt {b \cos (c+d x)}}+\frac {2 A \sin (c+d x)}{3 b d (b \cos (c+d x))^{3/2}}\right )\)

\(\Big \downarrow \) 3120

\(\displaystyle b^2 \left (\frac {2 (A+3 C) \sqrt {\cos (c+d x)} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )}{3 b^2 d \sqrt {b \cos (c+d x)}}+\frac {2 A \sin (c+d x)}{3 b d (b \cos (c+d x))^{3/2}}\right )\)

input
Int[((A + C*Cos[c + d*x]^2)*Sec[c + d*x]^2)/Sqrt[b*Cos[c + d*x]],x]
 
output
b^2*((2*(A + 3*C)*Sqrt[Cos[c + d*x]]*EllipticF[(c + d*x)/2, 2])/(3*b^2*d*S 
qrt[b*Cos[c + d*x]]) + (2*A*Sin[c + d*x])/(3*b*d*(b*Cos[c + d*x])^(3/2)))
 

3.1.67.3.1 Defintions of rubi rules used

rule 2030
Int[(Fx_.)*(v_)^(m_.)*((b_)*(v_))^(n_), x_Symbol] :> Simp[1/b^m   Int[(b*v) 
^(m + n)*Fx, x], x] /; FreeQ[{b, n}, x] && IntegerQ[m]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 3120
Int[1/Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticF[(1/2 
)*(c - Pi/2 + d*x), 2], x] /; FreeQ[{c, d}, x]
 

rule 3121
Int[((b_)*sin[(c_.) + (d_.)*(x_)])^(n_), x_Symbol] :> Simp[(b*Sin[c + d*x]) 
^n/Sin[c + d*x]^n   Int[Sin[c + d*x]^n, x], x] /; FreeQ[{b, c, d}, x] && Lt 
Q[-1, n, 1] && IntegerQ[2*n]
 

rule 3491
Int[((b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((A_) + (C_.)*sin[(e_.) + (f_.)*(x 
_)]^2), x_Symbol] :> Simp[A*Cos[e + f*x]*((b*Sin[e + f*x])^(m + 1)/(b*f*(m 
+ 1))), x] + Simp[(A*(m + 2) + C*(m + 1))/(b^2*(m + 1))   Int[(b*Sin[e + f* 
x])^(m + 2), x], x] /; FreeQ[{b, e, f, A, C}, x] && LtQ[m, -1]
 
3.1.67.4 Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(290\) vs. \(2(89)=178\).

Time = 7.86 (sec) , antiderivative size = 291, normalized size of antiderivative = 3.99

method result size
default \(-\frac {2 \left (-2 A \cos \left (\frac {d x}{2}+\frac {c}{2}\right ) \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-2 \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {2 \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1}\, F\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right ) \left (A +3 C \right ) \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+A \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {2 \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1}\, F\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )+3 C \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {2 \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1}\, F\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )\right ) \sqrt {\left (2 \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1\right ) b \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}}{3 \sqrt {-b \left (2 \left (\sin ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-\left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )\right )}\, \left (2 \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1\right ) \sin \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {\left (2 \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1\right ) b}\, d}\) \(291\)
parts \(-\frac {2 A \left (-2 \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {2 \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1}\, F\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right ) \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-2 \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right ) \cos \left (\frac {d x}{2}+\frac {c}{2}\right )+\sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {2 \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1}\, F\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )\right ) \sqrt {\left (2 \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1\right ) b \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}}{3 \sqrt {-b \left (2 \left (\sin ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-\left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )\right )}\, \left (2 \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1\right ) \sin \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {\left (2 \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1\right ) b}\, d}-\frac {2 C \sqrt {\left (2 \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1\right ) b \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}\, \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {-2 \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+1}\, F\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )}{\sqrt {-b \left (2 \left (\sin ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-\left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )\right )}\, \sin \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {\left (2 \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1\right ) b}\, d}\) \(381\)

input
int((A+C*cos(d*x+c)^2)*sec(d*x+c)^2/(cos(d*x+c)*b)^(1/2),x,method=_RETURNV 
ERBOSE)
 
output
-2/3*(-2*A*cos(1/2*d*x+1/2*c)*sin(1/2*d*x+1/2*c)^2-2*(sin(1/2*d*x+1/2*c)^2 
)^(1/2)*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*EllipticF(cos(1/2*d*x+1/2*c),2^(1 
/2))*(A+3*C)*sin(1/2*d*x+1/2*c)^2+A*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*sin(1/ 
2*d*x+1/2*c)^2-1)^(1/2)*EllipticF(cos(1/2*d*x+1/2*c),2^(1/2))+3*C*(sin(1/2 
*d*x+1/2*c)^2)^(1/2)*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*EllipticF(cos(1/2*d* 
x+1/2*c),2^(1/2)))*((2*cos(1/2*d*x+1/2*c)^2-1)*b*sin(1/2*d*x+1/2*c)^2)^(1/ 
2)/(-b*(2*sin(1/2*d*x+1/2*c)^4-sin(1/2*d*x+1/2*c)^2))^(1/2)/(2*cos(1/2*d*x 
+1/2*c)^2-1)/sin(1/2*d*x+1/2*c)/((2*cos(1/2*d*x+1/2*c)^2-1)*b)^(1/2)/d
 
3.1.67.5 Fricas [C] (verification not implemented)

Result contains higher order function than in optimal. Order 9 vs. order 4.

Time = 0.10 (sec) , antiderivative size = 116, normalized size of antiderivative = 1.59 \[ \int \frac {\left (A+C \cos ^2(c+d x)\right ) \sec ^2(c+d x)}{\sqrt {b \cos (c+d x)}} \, dx=\frac {\sqrt {2} {\left (-i \, A - 3 i \, C\right )} \sqrt {b} \cos \left (d x + c\right )^{2} {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) + i \, \sin \left (d x + c\right )\right ) + \sqrt {2} {\left (i \, A + 3 i \, C\right )} \sqrt {b} \cos \left (d x + c\right )^{2} {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) - i \, \sin \left (d x + c\right )\right ) + 2 \, \sqrt {b \cos \left (d x + c\right )} A \sin \left (d x + c\right )}{3 \, b d \cos \left (d x + c\right )^{2}} \]

input
integrate((A+C*cos(d*x+c)^2)*sec(d*x+c)^2/(b*cos(d*x+c))^(1/2),x, algorith 
m="fricas")
 
output
1/3*(sqrt(2)*(-I*A - 3*I*C)*sqrt(b)*cos(d*x + c)^2*weierstrassPInverse(-4, 
 0, cos(d*x + c) + I*sin(d*x + c)) + sqrt(2)*(I*A + 3*I*C)*sqrt(b)*cos(d*x 
 + c)^2*weierstrassPInverse(-4, 0, cos(d*x + c) - I*sin(d*x + c)) + 2*sqrt 
(b*cos(d*x + c))*A*sin(d*x + c))/(b*d*cos(d*x + c)^2)
 
3.1.67.6 Sympy [F]

\[ \int \frac {\left (A+C \cos ^2(c+d x)\right ) \sec ^2(c+d x)}{\sqrt {b \cos (c+d x)}} \, dx=\int \frac {\left (A + C \cos ^{2}{\left (c + d x \right )}\right ) \sec ^{2}{\left (c + d x \right )}}{\sqrt {b \cos {\left (c + d x \right )}}}\, dx \]

input
integrate((A+C*cos(d*x+c)**2)*sec(d*x+c)**2/(b*cos(d*x+c))**(1/2),x)
 
output
Integral((A + C*cos(c + d*x)**2)*sec(c + d*x)**2/sqrt(b*cos(c + d*x)), x)
 
3.1.67.7 Maxima [F]

\[ \int \frac {\left (A+C \cos ^2(c+d x)\right ) \sec ^2(c+d x)}{\sqrt {b \cos (c+d x)}} \, dx=\int { \frac {{\left (C \cos \left (d x + c\right )^{2} + A\right )} \sec \left (d x + c\right )^{2}}{\sqrt {b \cos \left (d x + c\right )}} \,d x } \]

input
integrate((A+C*cos(d*x+c)^2)*sec(d*x+c)^2/(b*cos(d*x+c))^(1/2),x, algorith 
m="maxima")
 
output
integrate((C*cos(d*x + c)^2 + A)*sec(d*x + c)^2/sqrt(b*cos(d*x + c)), x)
 
3.1.67.8 Giac [F]

\[ \int \frac {\left (A+C \cos ^2(c+d x)\right ) \sec ^2(c+d x)}{\sqrt {b \cos (c+d x)}} \, dx=\int { \frac {{\left (C \cos \left (d x + c\right )^{2} + A\right )} \sec \left (d x + c\right )^{2}}{\sqrt {b \cos \left (d x + c\right )}} \,d x } \]

input
integrate((A+C*cos(d*x+c)^2)*sec(d*x+c)^2/(b*cos(d*x+c))^(1/2),x, algorith 
m="giac")
 
output
integrate((C*cos(d*x + c)^2 + A)*sec(d*x + c)^2/sqrt(b*cos(d*x + c)), x)
 
3.1.67.9 Mupad [F(-1)]

Timed out. \[ \int \frac {\left (A+C \cos ^2(c+d x)\right ) \sec ^2(c+d x)}{\sqrt {b \cos (c+d x)}} \, dx=\int \frac {C\,{\cos \left (c+d\,x\right )}^2+A}{{\cos \left (c+d\,x\right )}^2\,\sqrt {b\,\cos \left (c+d\,x\right )}} \,d x \]

input
int((A + C*cos(c + d*x)^2)/(cos(c + d*x)^2*(b*cos(c + d*x))^(1/2)),x)
 
output
int((A + C*cos(c + d*x)^2)/(cos(c + d*x)^2*(b*cos(c + d*x))^(1/2)), x)